Hệ thống phát hiện xâm nhập (Intrusion Detection Systems - IDS) là hệ thống theo dõi, phát hiện và cảnh báo sự xâm nhập, cũng như các hành vi khai thác trái phép tài nguyên, xâm hại đến tính bí mật, toàn vẹn và sẵn sàng của hệ thống. Có nhiều phương pháp xây dựng phát hiện xâm nhập, nhưng xu hướng mới đang được nhiều nhà khoa học quan tâm là dựa trên mô hình học máy. Nhiều bộ dữ liệu đã được cung cấp để triển khai pha huấn luyện của các mô hình học máy. Nghiên cứu này tập trung xây dựng bộ dữ liệu phù hợp để áp dụng phương pháp cây quyết định, trích ra từ bộ dữ liệu khác.
Có nhiều nghiên cứu về việc ứng dụng học máy trong phát hiện xâm nhập mạng, phát hiện tấn công ứng dụng website. Một số nghiên cứu nổi bật liên quan gần đây có thể đề cập đến như:
Công trình [1], Rashid cùng cộng sự đã thực nghiệm nghiên cứu một số thuật toán học máy và học sâu trên 2 bộ dữ liệu NSL-KDD và CIDDS-001, kết quả thu được chỉ số đo về độ chính xác lên đến 99%. Tuy nghiên, nghiên cứu chỉ tập trung vào phát hiện tấn công DDoS trên hệ thống chung, chưa cụ thể các loại hình tấn công khác nhau.
Công trình [2], Thakkar và Lohiya đã nghiên cứu tổng quan về 13 bộ dữ liệu được sử dụng trong xây dựng các hệ thống phát hiện xâm nhập, kết quả cho thấy cần cập nhật dữ liệu mới để tăng hiệu suất của các hệ thống này. Việc xây dựng bộ dữ liệu phải gắn liền với kịch bản mạng thực tế trong môi trường thật. Nghiên cứu đã đánh giá 2 bộ dữ liệu CIC-IDS-2017 và CSE-CICIDS-2018 phù hợp nhất trong việc xây dựng các hệ thống phát hiện xâm nhập.
Với công trình [3], nhóm tác giả Sharafaldin đã trình bày về nghiên cứu xây dựng tập dữ liệu CSIIDS-2017. Trong khi nghiên cứu [4], D’hooge cùng cộng sự tiến hành thực nghiệm trên bộ dữ liệu CICIDS2017 và CSE-CIC-IDS2018, nghiên cứu đã đánh giá 2 bộ dữ liệu trong áp dụng học máy để phát hiện xâm nhập mạng, kết quả cho thấy bộ phân loại sử dụng thuật toán Rừng ngẫu nhiên đạt hiệu quả tốt nhất.
Công trình nghiên cứu số [5] là đề xuất của J. Kim cùng cộng sự xây dựng một hệ thống phát hiện xâm nhập dựa trên học sâu với nền tảng sử dụng bộ dữ liệu CIC-IDS-2018, tiến hành thử nghiệm phân loại trên các ngày cụ thể và đạt kết quả phân loại tốt nhất là 99%. Tuy nhiên, đối với một hệ thống thật thì việc phân loại này chưa hợp lý vì đối với mỗi ngày sẽ có một phân loại khác nhau.
Trong nghiên cứu số [6], nhóm nghiên cứu của C.Yin đã trình bày sự thiếu sót của học máy truyền thống trong bài toán phân loại dữ liệu từ dữ liệu lớn. Các nhà nghiên cứu đã thực hiện ứng dụng mạng RNN để xử lý dữ liệu lớn đã được số hóa và tiền xử lý dữ liệu. Thí nghiệm được xây dựng trên bộ dữ liệu NSL-KDD, bộ dữ liệu sau khi được xử lý, số lượng thuộc tính đã thay đổi từ 41 thuộc tính thành 122 thuộc tính. Kết quả, mô hình đạt được độ chính xác lên đến 83,28%.
Có nhiều bộ dữ liệu dùng cho việc huấn luyện tấn công mạng, bao gồm cả tấn công website như: Bộ dữ liệu DARPA của Viện Công nghệ Massachusetts; Bộ dữ liệu KDD Cup 1999, được hình thành trong cuộc thi “Các công cụ khai phá dữ liệu và nghiên cứu tri thức quốc tế lần thứ 3”; Bộ dữ liệu NSL-KDD được Tavallaee cùng các cộng sự công bố năm 2009; Bộ dữ liệu UNSW-NB15 được công bố năm 2015 bởi phòng thí nghiệm Cyber Range của Trung tâm An ninh mạng Australia (ACCS) công bố; và gần đây là bộ dữ liệu CSE-CIC-IDS2018.
Với CSE-CIC-IDS2018, đây là bộ dữ liệu nâng cấp dựa trên mô hình của bộ dữ liệu CIC-IDS2017. Bộ dữ liệu này thu thập đầy đủ lưu lượng mạng trong vòng 10 ngày. Số lượng máy tấn công được sử dụng là 50 máy, số máy nạn nhân bao gồm 420 máy trạm và 50 máy chủ. Tương tự như CIC-IDS 2017, bộ dữ liệu này được xây dựng dựa trên CICFlowMeter với 80 đặc trưng lưu lượng mạng được trích xuất. Có thể thấy bộ dữ liệu CSE-CIC-IDS2018 có đầy đủ các đặc trưng của bộ dữ liệu CIC-IDS 2017 nhưng toàn diện và đa dạng hơn.
Bộ dữ liệu CSE-CIC-IDS2018 bao gồm 10 tập dữ liệu CSV có gán nhãn các ngày thu thập, bao gồm 4.525.399 gói tin, mỗi gói tin có 80 thuộc tính. Mô phỏng với 17 loại tấn công, số gói tin có số lượng nhiều nhất là gói tin gán nhãn bình thường (2.856.035 gói tin, chiếm 63%), trong khi đó gói tin có số lượng ít nhất là gói tin gán nhãn SQL Injection (53 gói tin, chiếm 0,001%).
Về tấn công ứng dụng website, bộ dữ liệu thực nghiệm được xây dựng dựa trên cơ sở bộ dữ liệu CSECIC-IDS2018 bằng cách lọc các gói tin được gửi đến cổng 80 và cổng 443 như trong Hình 1 (sau đây gọi là IDS2021-WEB).
Hình 1. Các bước tiền xử lý dữ liệu bộ dữ liệu IDS2021-WEB
Bộ dữ liệu IDS2021-WEB được thực hiện tiền xử lý dữ liệu theo các công đoạn được mô tả tại Hình 1 cụ thể như sau:
Sau khi loại bỏ các giá trị non-finite và thay thế các giá trị NULL, kiểm tra và loại bỏ các cột dữ liệu dư thừa trong bộ dữ liệu. Kết quả thực hiện kiểm tra nhận thấy các trường: BwdPSHFlags, FwdURGFlags, BwdURGFlags, CWEFlagCount, FwdByts/bAvg, FwdPkts/bAvg, FwdBlkRateAvg, BwdByts/bAvg, BwdPkts/bAvg, BwdBlkRateAvg có số liệu không đổi, loại khỏi bộ dữ liệu.
Tiếp tục loại các trường như Timestamp, Protocol vì không có ý nghĩa. Cuối cùng thu được bộ dữ liệu IDS2021-WEB với 69 thuộc tính. Sau khi tiền xử lý dữ liệu, kết quả thu được bộ dữ liệu với tổng số lượng 3.469.632 gói tin (Bảng 1), trong đó bao gồm 10 loại tấn công khác nhau nhằm vào ứng dụng website.
Bảng 1. Bảng thống kê số lượng các loại gói tin trong IDS2021-WEB
So sánh bộ dữ liệu IDS2021-WEB và CSE-CICIDS2018 được mô tả tại Bảng 2, điều này thể hiện rằng bộ dữ liệu mới IDS2021-WEB có kích thước nhỏ hơn, tỉ lệ giữa gói tin tấn công và bình thường cân bằng, số lượng thuộc tính giảm. Tuy nhiên tỉ lệ mất cân bằng về số lượng gói tin giữa các loại tấn công vẫn có sự chênh lệch khá lớn, nhưng đã cải thiện so với bộ dữ liệu CSECIC-IDS2018.
Bảng 2. So sánh bộ dữ liệu IDS2021-WEB và CSE-CIC-IDS2018
Áp dụng kỹ thuật trực quan hóa dữ liệu dựa trên t-NSE [13] được thể hiện trong Hình 2, có thể thấy phân phối của các gói tin tấn công tương đối rõ, tuy nhiên một số loại tấn công được phân phối khá gần với các gói tin được dán nhãn bình thường.
Hình 2. Trực quan hóa dữ liệu sử dụng trên thuật toán t-NSE
Hình 3 mô tả về quá trình thực nghiệm của nghiên cứu bao gồm các bước: Phân tích bộ dữ liệu CSECIC-IDS2018; Trích chọn xây dựng bộ dữ liệu mới IDS2021-WEB và thực nghiệm bộ dữ liệu mới xây dựng với các thuật toán học máy.
Hình 3. Mô hình tiến hành thực nghiệm
Thực nghiệm đánh giá trên ngôn ngữ lập trình Python, môi trường Google Collaboratory, sử dụng GPU. Kỹ thuật học máy được sử dụng trên các mô hình: Navie Bayes, Gradient Boosting, k-NN, Cây quyết định, Cây mở rộng, Rừng ngẫu nhiên. Trước khi tiến hành thực nghiệm, công việc tiền xử lý dữ liệu được thực hiện để mô hình đánh giá đạt kết quả cao nhất.
Để đánh giá các thuật toán học máy, thực hiện 2 phương pháp thực nghiệm là phân loại 2 lớp và phân loại đa lớp. Trong đó, phân loại 2 lớp là trường hợp kiểm tra gói tin có phải là gói tin tấn công hay không, với phân loại đa lớp là kiểm tra xem gói tin đó có phải gói tin tấn công và thuộc loại tấn công nào. Do đó, xây dựng bộ dữ liệu có gán nhãn phù hợp với phương pháp thực nghiệm.
Tiếp tục chia bộ dữ liệu thành 2 tập con, bao gồm tập “train” và tập “test”. Kích thước và đặc điểm các bộ dữ liệu như sau:
Bảng 3. Kích thước bộ dữ liệu huấn luyện và kiểm tra
Sau khi chia thành công các bộ dữ liệu huấn luyện, tiến hành thực nghiệm và sử dụng các phương pháp đánh giá kết quả. Các bước thử nghiệm và đánh giá kết quả sẽ được nhóm tác giả trình bày tại phần II của bài báo.
TÀI LIỆU THAM KHẢO 1. A. Rashid, M. J. Siddique, và S. M. Ahmed, “Machine and Deep Learning Based Comparative Analysis Using Hybrid Approaches for Intrusion Detection System”, trong 2020 3rd International Conference on Advancements in Computational Sciences (ICACS), Lahore, Pakistan, tháng 2 2020, tr 1–9. doi: 10.1109/ICACS47775.2020.9055946. 2. A. Thakkar và R. Lohiya, “A Review of the Advancement in Intrusion Detection Datasets”, Procedia Computer Science, vol 167, tr 636–645, 2020, doi: 10.1016/j. procs.2020.03.330. 3. I. Sharafaldin, A. Habibi Lashkari, và A. A. Ghorbani, “Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization”, trong Proceedings of the 4th International Conference on Information Systems Security and Privacy, Funchal, Madeira, Portugal, 2018, tr 108–116. doi: 10.5220/0006639801080116. 4. L. D’hooge, T. Wauters, B. Volckaert, và F. De Turck, “Inter-dataset generalization strength of supervised machine learning methods for intrusion detection”, Journal of Information Security and Applications, vol 54, tr 102564, tháng 10 2020, doi: 10.1016/j.jisa.2020.102564. 5. J. Kim, Y. Shin, và E. Choi, “An Intrusion Detection Model based on a Convolutional Neural Network”, J Multimed Inf Syst, vol 6, số p.h 4, tr 165–172, tháng 12 2019, doi: 10.33851/JMIS.2019.6.4.165. 6. C. Yin, Y. Zhu, J. Fei, và X. He, “A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks”, IEEE Access, vol 5, tr 21954–21961, 2017, doi: 10.1109/ ACCESS.2017.2762418. 7. “IDS 2018 | Datasets | Research | Canadian Institute for Cybersecurity | UNB”. |
TS. Nguyễn Văn Căn, Đoàn Ngọc Tú (Trường Đại học Kỹ thuật - Hậu cần Công an nhân dân)
10:00 | 21/10/2022
17:00 | 18/01/2023
16:00 | 09/08/2022
13:00 | 28/08/2024
17:00 | 09/09/2022
14:00 | 06/12/2024
Một tập hợp gồm 15 ứng dụng phần mềm độc hại SpyLoan Android mới với hơn 8 triệu lượt cài đặt đã được phát hiện trên Google Play, chủ yếu nhắm vào người dùng từ Nam Mỹ, Đông Nam Á và châu Phi.
14:00 | 02/10/2024
Trong bối cảnh các cuộc tấn công mạng ngày càng tinh vi và phức tạp, Zero Trust đang nổi lên như một mô hình bảo mật toàn diện cho doanh nghiệp. Tại Hội thảo Netpoleon Solutions Day 2024 với chủ đề “Transforming Security with Zero Trust”, ông Nguyễn Kỳ Văn, Giám đốc Netpoleon Việt Nam đã chia sẻ những góc nhìn sâu sắc về tầm quan trọng của mô hình Zero Trust và cách thức doanh nghiệp Việt Nam có thể ứng dụng hiệu quả giải pháp này.
08:00 | 08/08/2024
Trí tuệ nhân tạo (AI) có khả năng xác định và ưu tiên các rủi ro, mang lại cho các chuyên gia IT cơ hội phát hiện ngay lập tức mã độc trong mạng của họ và phát triển chiến lược phản ứng sự cố. Hiện nay, AI đóng vai trò quan trọng trong quản lý an toàn thông tin (ATTT), đặc biệt là trong việc phản ứng với sự cố, dự đoán việc xâm phạm, kiểm soát hiệu suất và quản lý hàng tồn kho. Bài viết này giới thiệu về các ứng dụng của AI trong quản lý ATTT bằng cách xem xét những lợi ích và thách thức của nó, đồng thời đề xuất các lĩnh vực cho các nghiên cứu trong tương lai.
09:00 | 18/07/2024
Mới đây, Bộ Công an đã thông tin về tình trạng tin nhắn tin nhắn thương hiệu (SMS Brandname) giả mạo phần lớn xuất phát từ việc các đối tượng sử dụng trạm phát sóng BTS giả mạo để gửi hàng loạt tin nhắn lừa đảo tới người dùng với mục đích nhằm chiếm đoạt tài sản.
Trong bối cảnh chuyển đổi số và ứng dụng rộng rãi của công nghệ thông tin (CNTT) thì xu hướng kết nối liên mạng để chia sẻ cơ sở dữ liệu (CSDL) trở nên tất yếu. Các hệ thống công nghệ vận hành (Operational Technology - OT) cũng không nằm ngoài xu hướng này, quá trình đó được gọi là Hội tụ IT/OT. Do vậy, nhu cầu truyền dữ liệu một chiều giữa các mạng độc lập ngày càng tăng để phục vụ cho mục đích khai thác dữ liệu. Bài viết này giới thiệu một giải pháp mới dựa trên công nghệ vi mạch tích hợp khả trình (Field-Programmable Gate Array - FPGA), sử dụng cơ chế xử lý đa luồng tốc độ cao, giúp duy trì băng thông hệ thống mà không gây ra tình trạng treo hoặc nghẽn mạng, cho phép các kết nối yêu cầu thời gian thực. Đồng thời, bài viết cũng sẽ trình bày giải pháp giả lập giao thức TCP/IP hỗ trợ cho các giao thức truyền thông trong các hệ thống mạng điều khiển IT/OT.
09:00 | 06/01/2025
Báo cáo của Lineaje AI Labs đã đặt ra một câu hỏi quan trọng về tính minh bạch trong chuỗi cung ứng phần mềm quan trọng trên toàn cầu, đặc biệt trong bối cảnh phần mềm nguồn mở đang ngày càng được ứng dụng rộng rãi dẫn đến những nguy cơ tiềm ẩn về bảo mật, nhất là khi các đóng góp vào các dự án mã nguồn mở từ những nguồn không xác định.
08:00 | 27/02/2025