REFERENCES
[1]. Hà Quang Thụy, Nguyễn Hà Nam, Nguyễn Trí Thành, “Giáo
trình khai phá dữ liệu”, VNU Publishing, 2013.
[2]. Moran Baruch, “DGA Detection Using Machine Learning
Methods”, Master Thesis, University of Jyväskylä, 2016.
[3]. Thomas Edgar and David Manz, “Research Methods for
Cyber Security”, Syngress, 2017.
[4]. Xingguo Li, Junfeng Wang, and Xiao song Zhang, “Botnet
Detection Technology Based on DNS”, Future Internet 2017, 9, 55.
[5]. Michael Sikorski, Andrew Honig, “Practical Malware
Analysis: The Hands-On Guide to Dissecting Malicious Software”, No Starch
Press, 2012.
[6]. Konrad Rieck, Philipp Trinius, Carsten Willems, and
Thorsten Holz, “Automatic Analysis of Malware Behavior using Machine Learning”,
2011.
[7]. Daisuke Miyamoto, Hiroaki Hazeyama, Youki Kadobayashi,
“An Evaluation of Machine Learning-based Methods for Detection of Phishing
Sites”, 2017.
[8]. Jasper Abbink, “Popularity-based Detection of Domain
Generation Algorithms, Master Thesis”, Delft University of Technology, 2017.
[9]. Christopher M. Bishop, “Pattern Recognition and Machine
Learning”, Springer Science, 2006.
[10]. Ian Goodfellow, Yoshua Bengio, Aaron Courville, “Deep
Learning”, MIT Press book, 2016.
[11]. M. Namazifar, Y. Pan, “Research Spotlight: Detecting
Algorithmically Generated Domains”, Cisco, 2015.
[12]. Enoch Agyepong, William J. Buchanan, Kevin Jones,
“Detection of Algorithmically Generated Malicious Domain”, Conference: 6th
International Conference of Advanced Computer Science & Information
Technology, 2018.
[13]. M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou
II, S. Abu-Nimeh, W. Lee, and D. Dagon, “From Throw-Away Traffic to Bots:
Detecting the Rise of DGA-Based Malware”. In USENIX security symposium Vol. 12,
2012.
[14]. S. Yadav, A.K.K Reddy, A.L. Reddy, and S. Ranjan,
(2010, November). “Detecting Algorithmically generated malicious domain names”.
In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement pp.
48-61. ACM.
[15]. G. Zhao, K. Xu, L. Xu, and B. Wu, (2015). “Detecting
APT Malware Infections Based on Malicious DNS and Traffic A nalysis”. IEEE Access, 3, pp.
1132-1142, 2015.
[16]. N. Goodman, “A Survey of Advances in Botnet
Technologies”. arXiv preprint arXiv:1702.01132, 2017.
[17]. V. Oujezsky, T. Horvath, and V. Skorpil, “Botnet
C&C Traffic and Flow Lifespans Using Survival Analysis”. International
Journal of Advances in Telecommunications, Electrotechnics, Signals and
Systems, 6(1), pp. 38-44, 201.
[18]. R. Sharifnya, and M. Abadi, DFBotKiller: “Domain-flux
botnet detection based on the history of group activities and failures in DNS
traffic”. Digital Investigation, 12, pp. 15-26, 2015.
[19]. Kotsiantis, Sotiris B., I. Zaharakis, and P. Pintelas.
“Supervised machine learning: A review of classification techniques”. (2007):
3-24.
[20]. A. Chailytko, and A. Trafimchuk, “DGA clustering and
analysis: mastering modern, evolving threats”, 2015.
[21]. L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi,
“Finding Malicious Domains Using Passive DNS Analysis”, In Ndss, 2011.
[22]. J. Kwon, J. Lee, H. Lee and A Perrig, PsyBoG: “A
scalable botnet detection method for large-scale DNS traffic, Computer
Networks”, 97, pp. 48-73, 2016.
[23]. J. Lee, and H. Lee, “GMAD: Graph-based Malware
Activity Detection by DNS traffic analysis”, Computer Communications, 49,
33-47, 2014.
[24]. R. Sharifnya, and M. Abadi, “DFBotKiller: Domain-flux
botnet detection based on the history of group activities and failures in DNS
traffic”, Digital Investigation, 12, pp. 15-26, 2015.
[25]. Yu Fu, Lu Yu, Richard Brooks, “Poster: Zero-day Botnet
Domain Generation Algorithm (DGA) Detection using Hidden Markov Models (HMMs)”,
38th IEEE Symposium on Security and Privacy, 2017.
[26]. Tianyu Wang, Li-Chiou Ch, “Detecting Algorithmically
Generated Domains Using Data Visualization and N-Grams Methods”, Proceedings of
Student-Faculty Research Day, 2017.
[27]. Jonathan Woodbridge, Hyrum S. Anderson, Anjum Ahuja,
and Daniel Grant, “Predicting Domain Generation Algorithms with Long Short-Term
Memory Networks”, arXiv:1611.00791, 2016.
|