Gửi lúc: 17/07/2019 13:46:39
Bookmark and Share

Phân tích 64 lược đồ hàm nén trong mô hình hàm băm dựa trên mã khối

Tóm tắt— Cấu trúc cho các hàm băm lặp dựa trên mã khối đã được nghiên cứu, trong đó kích thước giá trị băm bằng kích cỡ khối và kích cỡ khóa đã được quan tâm nghiên cứu rộng rãi. Bài báo này, chúng tôi chi tiết 64 lược đồ theo mô hình tổng quát được đề xuất bởi B. Preneel và các đồng sự, dựa trên 5 tấn công cơ bản. Chi tiết hóa phân loại lược đồ theo số lượng các biến đầu vào và thực hiện đánh giá độ an toàn của một trong số các lược đồ an toàn theo quan điểm thám mã vi sai.

Abstract— Constructions for hash functions based on a block cipher have been studied where the size of the hashcode is equal to the block length of the block cipher and where the key size is approximately equal to the block length. In this paper, we have analyzed in more detail 64 general model schemes which has been represented by B. Preneel et al. using five basic attacks. An classification of these schemes also have been done in more detail by considering linear transformations of the inputs. More over, we have investigated the security for one of the secure schemes under the differential cryptanalysis, others are similar.

Xem toàn bộ bài báo tại đây.

TÀI LIỆU THAM KHẢO

[1]. Damgård, I.B. “A design principle for hash functions”, CRYPTO’89, 1989.

[2]. Merkle, R.C. “One way hash functions and DES”., CRYPTO’89, 1989.

[3]. P. Gauravaram. “Cryptographic Hash Functions Cryptanalysis, Design and Applications”, Thesis, 2013. Information Security Institute, Queensland University of Technology.

[4]. B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions based on block ciphers: a synthetic approach”, CRYPTO’1993, Lecture Notes in Computer Science 773, D. R. Stinson (ed.), Springer-Verlag, pp. 368-378, 1993.

[5]. M.O. Rabin, “Digitalized signatures,” in “Foundations of Secure Computation,” R. Lipton and R. DeMillo, Eds., Academic Press, New York, pp. 155-166, 1978.

[6]. D. Denning, “Digital signatures with RSA and other public-key cryptosystems”.   Communications ACM, vol. 27, pp. 388-392, April 1984.

[7].  R.S. Winternitz, “A secure one–way hash function built from DES,” Proc. IEEE Symposium on Information Security and Privacy 1984, pp. 88-90, 1984.

[8]. R.S. Winternitz, “Producing a one-way hash function from DES”, CRYPTO’83, D. Chaum, Ed., Plenum Press, New York, pp. 203-207, 1984.

[9]. S.M. Matyas, C.H. Meyer, and J. Oseas, “Generating strong one-way functions with cryptographic algorithm,” IBM Techn. Disclosure Bull., vol. 27, no. 10A, pp. 5658-5659, 1985.

[10]. S. Miyaguchi, M. Iwata, and K. Ohta, “New 128-bit hash function,” Proc. 4th International Joint Workshop on Computer Communications, Tokyo, Japan, July 13–15, pp. 279-288, 1989.

[11]. Dunkelman, O. and E. Biham. “A framework for iterative hash functions: Haifa”. in 2nd NIST Cryptographich Hash Workshop, 2006.

[12]. Rivest, R., “The MD5 message-digest algorithm”, 1992.

[13]. Eastlake, D. and P. Jones, “US secure hash algorithm 1 (SHA1”), RFC 3174, September, 2001.

[14]. Barreto, P. and V. Rijmen. “The Whirlpool hashing function”. in First open NESSIE Workshop, Leuven, Belgium, 2000.

[15]. Preneel, B., “Analysis and design of cryptographic hash functions”. Thesis, 2003, Citeseer.[16].  Dolmatov, V. and A. Degtyarev, “GOST R 34.11-2012: Hash Function”, 2013.

[16].  Dolmatov, V. and A. Degtyarev,” GOST R 34.11-2012: Hash Function”, 2013.

[17]. AlTawy, R., Kircanski, A., and Youssef, A. M. “Rebound attacks on Stribog”. In ICISC (2013), H.-S. Lee and D.-G. Han, Eds., vol. 8565 of Lecture Notes in Computer Science, Springer, pp. 175–188, 2013.

[18].  O. Dunkelman, E. Biham, “The AHAvite-3 Hash Function”. Submission to NIST (Round 2) (2009): 113.

Thông tin trích dẫn: Nguyễn Văn Long, Hoàng Đình Linh, “Phân tích 64 lược đồ hàm nén trong mô hình hàm băm dựa trên mã khối”, Nghiên cứu khoa học và công nghệ trong lĩnh vực An toàn thông tin, Tạp chí An toàn thông tin, Vol. 02, No. 01, pp. 48-56, 2016.

Nguyễn Văn Long, Hoàng Đình Linh